James-Stein type estimators of variances

نویسندگان

  • Tiejun Tong
  • Homin Jang
  • Yuedong Wang
چکیده

In this paper we propose James–Stein type estimators for variances raised to a fixed power by shrinking individual variance estimators towards the arithmetic mean. We derive and estimate the optimal choices of shrinkage parameters under both the squared and the Stein loss functions. Asymptotic properties are investigated under two schemes when either the number of degrees of freedom of each individual estimate or the number of individuals approaches to infinity. Simulation studies indicate that the performance of various shrinkage estimators depends on the loss function, and the proposed estimator outperforms existing methods under the squared loss function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Small Area Estimation Methods for Estimating Unemployment Rate

Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...

متن کامل

JAMES-STEIN TYPE ESTIMATORS IN LARGE SAMPLES WITH APPLICATION TO THE LEAST ABSOLUTE DEVIATION ESTIMATOR BY TAE-HWAN KIM AND HALBERT WHITE DISCUSSION PAPER 99-04 FEBRUARY 1999 James-Stein Type Estimators in Large Samples with Application to The Least Absolute Deviation Estimator

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point, which makes it possible that the “prior” becomes more accurate as the sample size grows. We provide an analytic expression for the as...

متن کامل

James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent poi...

متن کامل

JAMES-STEIN TYPE ESTIMATORS IN LARGE SAMPLES WITH APPLICATION TO THE LEAST ABSOLUTE DEVIATIONS ESTIMATOR BY TAE-HWAN KIM AND HALBERT WHITE DISCUSSION PAPER 99-04R MAY 2000 James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2012